Variations of Plasmon Coupling between Two Identical Au Nanospheres with Their Separation and Sizes Studied within a Hibridization Scheme

Margareta V. Stephanie

Physics of Magnetism and Photonc Research Division, Institut Teknologi Bandung.

Introduction

The plasmon coupling effect is studied using a simple scheme adapted from the quantum orbital hybridization model.

Figure 1. (a) Scheme of two identical metal nanospheres where *x* and *r* are separation and radius of spheres. (b) Plasmon hybridization model of (a)

Basic Formulation

Mimicking quantum mechanics formulation of linear combination of the two plasmon modes.

$$E_{\pm} = \frac{\alpha \pm \beta(x, r)}{1 \pm S(x, r)}$$

where

- α = LSPR energy of each uncoupled plasmon,
- $\succ \beta$ = the coupling parameter,
- \succ S = the orbital overlap = 0

Results

The best fit with the set of coefficients (αi, bi, ci) given in Table 1 is obtained by the following expression

$$E_{-}^{i}(x) = \alpha_{i} \frac{b_{i}}{x^{2}} e^{\frac{c_{i}}{x}}$$

Table 1. Coefficients of bonding energyscheme for various radii

i	r_i (nm)	α _i	b _i	C _i
1	12	2.308	51.92	-11.97
2	16	2.296	150	2.05
3	20	2.281	329.6	15.66

Figure 2. Variation of bonding energy for increasing center-to-center separation for various radii of the Au nanospheres.

Conclusion

Hybridization scheme developed in this study shows that the interparticle coupling depends on the separation and the size of particles.

Come Visit my Poster PP12